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ABSTRACT

The U.S. Navy is constantly looking toward using more lightweight and

compact heat exchangers. One of the areas of interest is the use of enhanced

boiler tubes in the evaporator of a refrigerator plant, thereby cutting down on the

number of tubes needed.

The present research is a continuation of work done at NPS concentrating

on the boiling characteristics from small tube bundles sitting in a pool of pure R-

114, simulating the evaporator in such a heat exchanger. Two types of

commercially available enhanced boiler tubes were used, namely High Flux and

Turbo-B. In addition, the effect of adding up to 6% of oil to the R-1 14 (Simulating

typical amounts found in a real evaporator) during Turbo-B tube experiments was

studied to see how much the heat transfer performance of the tubes decreased.

All tests were conducted at 2.2 C corresponding to typical working pressures in

a Navy evaporator.

The results using pure R-1 14 indicated that the heat transfer performance

for both types of tube were similar and outperformed smooth and finned tube

bundles by a factor of up to 5 and 3 respectively. The effectiveness of the Turbo-B

tube bundle degraded with increased amounts of oil. At a practical heat flux of

q"=30 kW/m 2, a 9% and 15% degradation from pure R-1 14 was observed for 3%

and 6% oil concentrations respectively.
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NOMENCLATURE

SYMBOL UNITS NAME/DESCRIPTION

Aas V Voltage output from current sensor

AC m2  Tube-wall cross section area

As m2  Area of heated surface

cp J/kg K Specific heat

Di m Inside tube diameter

Do m Outside tube c'iameter

Dmc m Thermocouple location diameter

g m/s 2  Gravitational acceleration

h W/m2 K Heat transfer coefficient of enhanced tube surface

hb W/m 2 K Heat transfer coefficient of tube unheated smoc, tube

ends
ht m Height of Freon column above a heated instrumented

tube
K W/m K Thermal conductivity of Freon

k, W/m K Thermal conductil'Iy of copper

L m Heated length of tube

m Unheated length of tube

m Corrected unheated length of tube

n 1 /m Parameter in the calculation of qf, see equations B.9

and 8.13

Fr Prandtl number

p m Perimeter of the tube outside surface

xi



Ap Pa Hydrostatic pressure difference between tube and free

surface

q W Heat transfer rate

q" W/m 2  Heat flux

q1  W Heat transfer rate from unheated smooth tube ends

T C Temperature

t m Thickness of tube

AT C Wall Superheat, (T,, - T,)

Tfilm C Film temperature, (T Tu,) /2

Tfilm k  K Film thermodynamic temperature

Tid1 C Liquid temperature reading from thermocouple 4

Tld2 C Liquid temperature reading from thermocouple 5

Ta C Saturation temperature

T.I. C Corrected saturation temperature due to hydrostatic

pressure difference

T'i C Average inside wall temperature

ToK K Average inside wall thermodynamic temperature

C Average outside wall temperature

Vas V Voltage output from voltage sensor

m2/s Thermal diffusivity

1/K Thermal expansion coefficient

xii



IA kg/m s Dynamic viscosity of liquid

v m2/s Kinematic viscosity of liquid

p kg/m3  Density of liquid

C Fourier conduction term

4Variable in density calculation

xiii



ACKNOWLEDGEMENTS

Above all, I wish to thank my wife and best friend Deniz for her patience

and understanding as well as unwavering support throughout this endeavor.

I also wish to thank Dr. Paul Marto and Dr. Steve Memory for their infinite

patience and accurate guidance throughout this investigation.

Additionally, the assistance rendered by Thomas McCord and the Machine

Shop personnel of the Mechanical Engineering Department was invaluable.

xiv



I. INTRODUCTION

A. BACKGROUND

In recent years, the Navy has been increasingly interested in the use of more

compact and lighter heating, ventilation and air conditioning systems. To a lesser

degree, cost has also been a major influence.

The design of reliable, efficient and compact heat exchangers involves the

testing of many different coolants (Freons) and many different enhanced heat

transfer surfaces. Today's Navy uses Refrigeration-1 14 having tried previously R-

11 and R-12. Despite being widely used in the refrigeration industry, especially for

large refrigeration and air conditioning systems, the use of R-1 1 has been avoided

in the Navy due to internal corrosion caused by acidic attack. On the other hand,

prevention of moisture leaking into the system due to moderate operating pressure

is the main advantage of R-1 14. In addition, R-1 14 is more stable with temperature

and relatively non-toxic. Since R-1 14 is a well-wetting organic liquid, temperature

excursion or "boiling hysterisis" is commonly observed in pool boiling of R-1 14.

Nucleation sites at the tube surface are filled with R-1 14 (due to its very good

wetting characteristics), causing an increase in the amount of superheat required

to initiate boiling compared with other Freons.

Another variable which can improve the heat transfer is the surface of the

heat exchanger itself. Enhanced boiling tubes offer several important advantages

1



over conventional, plain tube design. As described by Thome [Ref. 1], these

include: a shell-side boiling heat transfer coefficient of about 2 to 10 times that of

a plain tube bundle; the ability to operate at smaller wall superheats; an improved

fouling resistance offered by integral-low finned tL -s.

Enhanced boiling tubes, when applied correctly, can make previously

impractical temperature approaches not only feasible but also thermally efficient.

These tubes can be installed in nearly all the heat exchanger configurations and

they are typically used for conventional reboilers and evaporators in service, in the

petroleum and chemical processing industries.

Currently, copper finned tubes and/or High Flux tubes are used in Navy

refrigeration applications. Despite being available with different fin geometries, only

low finned versions are used for boiling applications since the large boiling heat

transfer coefficients for medium and high-finned tubes produce an unacceptably

low fin efficiency. The finned tubes are made from many different metals. As

described by Thome [Ref. 1], the fins are plastically formed by pinching the tube

between a plug placed inside and three sets of planetary rings of increasing

diameter that compress the outer tube wall and "raise" the fins. Finned tubes

exhibit nearly a three-fold increase in heat transfer performance over plain or

smooth tubes.

Another type of enhanced tube surface (called High Flux) is the first type of

boiling tube other than a low-finned tube to become widely used by the Navy. This

tube is fabricated by spraying a specially developed coating (made up of a binder,

2



a metallic powder and a brazing powder) on its exterior surface to form a thin,

rough film. The coated tube is then placed in an oven to melt the brazing powder

and to burn off the binding material, leaving behind a thin, porous metallic matrix

that is several particle layers thick and has a multitude of random, interconnected

passageways. High Flux tubes exhibit a three-fold increase in heat transfer

performance over the finned tubes.

Another enhanced surface under consideration is called Turbo-B. On this

surface, the exterior boiling enhancement is made by raising integral low fins,

cutting longitudinally across these fins,and then rolling the fins to compress them

to form mushroom-like pedestals. Re-entrant passageways are thus formed in a

rectangular crosshatch pattern. The shape of the fins, when viewed from above,

is close to rectangular. This tube is currently available in copper, copper-nickel and

low-carbon steel.

The performance of any given tube in a bundle can be significantly different

from the performance of a similar tube alone in a large liquid pool. Murphy [Ref.

2] as well as Marto and Memory [Ref. 3] reported that when boiling as a single

tube the Turbo-B tube exhibited the best overall performance when compared with

a smooth, finned and even a High Flux tube (at low heat fluxes). However, tube

bundle boiling characteristics of Turbo-B tubes are currently unavailable; to

investigate these characteristics is one of the objectives of this thesis study.

3



B. OBJECTIVES

Based upon the foregoing discussion, the objectives of this thesis work are:

1. to obtain data for a High Flux tube bundle operating in R-1 14 using
increasng and then decreasing heat flux to analyze "boiling hysterisis,"

2. to fabricate and instrument a Turbo-B tube bundle and take data in different
R-1 14/oil mixtures.

3. to compare data taken with the Turbo-B tube bundle to data taken from
smooth, finned and High Flux tube bundles as well as from a single tube
apparatus.

4



I. LITERATURE SURVEY

A. GENERAL INTRODUCTION

Boiling may occur under various conditions. The term "pool boiling" refers to

a situation in which the liquid is quiescent; its motion near the surface is due to

free convection and mixing induced by bubble growth and detachment. Pool

boiling heat transfer is most easily explained with reference to the well-known

boiling curve, which represents the functional dependence of heat flux leaving the

heated wall on the temperature difference between the surface of the heated wall

and the surrounding bulk liquid. The pool boiling curve is divided into four distinct

heat transfer regimes; natural convection (single phase), nucleate pool boiling,

transition boiling and film boiling.

As the wall superheat is increased, natural convection is in effect until

nucleation occurs and the first bubbles form on the heated wall. At point B on

Figure 2.1, natural convection is complete and the onset of nucleate boiling starts;

it is the presence of sufficient wall superheat that activates nucleate boiling. Curve

B-C exhibits the overshoot, which is sometimes referred to as the temperature

excursion. This may or may not be seen depending upon the wetting

characteristics of the fluid used. The coolant, currently used by the Navy, R-1 14,

typically exhibits this overshoot behavior. Between points C and D, nucleate pool

boiling is attained. In this regime, heat transfer rates and convection coefficients
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are high and it is thus desirable to operate many engineering devices in this

boiling regime. Presently, most of the data available for enhanced surfaces have

been taken in this region. During nucleate boiling, the difference in behavior

between increasing and decreasing heat flux is referred to as boiling "hysterisis."

Following departure from nucleate pool boiling (point E), the critical heat flux (CHF)

is reached. This maximum is thought to occur as a result of hydrodynamic

instability in the vapor jets leaving the heated wall, which in turn causes a vapor

film to form over portions of the heated wall. Since the vapor formation is very

rapid, a vapor film begins to form on the surface. At any point on the surface,

conditions may oscillate between film and nucleate boiling. Finally, complete film

boiling is reached (F-H). This regime is characterized by a stable vapor film that

covers the whole tube surface. The heat must be conducted or convected through

this vapor blanket to reach the bulk fluid. This additional resistance causes smaller

heat transfer coefficients and larger wall superheats. This regime is avoided in

design considerations due to its poor thermal capability. The reduced heat flux is

marked by the solid line. The dashed curve indicates the transition boiling regime.

B. EXPERIMENTAL AND THEORETICAL STUDIES

Today's Navy already uses finned and High Flux tubes in its shipboard heat

exchangers. Replacement of these kind of tubes, in place of plain, drawn tubes,

are the results of extensive experimental research. Initial experiments with a single

tube apparatus showed that improvements in performance up to a factor of 10-20

6



could be obtained with the use of enhanced surfaces. Some of these single tube

experiments were repeated in a tube bundle to provide more realistic results. To

date, in tube bundle experiments, smooth, finned, cold worked finned surface (i.e.,

Gewa-T and Thermoexcel-E) and porous coated surfaces have been tested using

different refrigerants. Tube bundle experiments showed that bundle performance

primarily depends not only upon the type of enhancement but also on the

operating conditions (e.g., pressure, saturation temperature, etc.).

Yilmaz and Palen [Ref. 4] obtained data for an integral low-finned tube bundle

using a hydrocarbon. They pointed out that finned tube bundles normally give

higher heat fluxes and therefore much higher heat duty per unit length than

identical plain tube bundles at very low wall superheat. This is where the finned

tube bundle is more likely to be economically feasible. According to Yilmaz and

Palen [Ref. 4], the presence of fins can increase heat transfer in nucleate boiling

due to increased surface area. On the other hand, at high wall superheats, the

finned tubes may experience some partial vapor blanketing, thus causing the

bundle heat transfer coefficients to be less than those for a single finned tube.

Hahne and Muller [Refs. 5, 6] conducted experiments on a low integral-fin

tube bundle using R-1 1. They found that the heat transfer coefficients varied with

position within the bundle and heat flux. At low heat fluxes, the heat transfer

coefficient increased significantly as one moved up the bundle; as the heat flux

increased, the boiling curve of each tube converged to a single curve which was

representative of a single finned tube.
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Anderson (Ref. 7] made measurements for boiling of refrigerants from

smooth and finned tube (19 fins per inch) bundles. The bundle, similar to the

presented thesis work, contained 15 heated tubes arranged in an equilateral

triangular pitch of 19.1 mm. The smooth tube bundle was tested in R-113 and R-

114. Heat transfer performance was more than doubled for the finned tubes when

compared to that for the smooth tubes. The results of Anderson's [Ref. 7] smooth

tube bundle experiments are shown in Figure 2.2.

The second type of enhanced surface commonly tested in bundles includes

Thermoexcel-E and Gewa-T tubes. Yilmaz, Palen and Taborek [Ref. 8] point out

that a single Gewa-T tube outperforms a plain smooth tube by a factor of 10 at low

wall superheats. However the enhancement of the Gewa-T tube bundle relative to

a single Gewa-T tube is much smaller than the corresponding enhancement of a

plain tube-bundle compared to a single plain tube. Experiments with Thermoexcel-

E tubes also agreed with this Gewa-T tube performance.

Another enhancement technique which is aimed at improving the nucleation

characteristics of a surface is the bonding of a porous, sintered metallic matrix to

the base tube; these are called High Flux tubes which are fabricated by Union

Carbide. This type of enhanced surface has not only been tested in a single tube

apparatus, but also in a variety of tube bundles. Reilly [Ref. 9] investigated a single

High Flux tube in R-1 14 at a boiling temperature of -2.2 C. The same enhanced

surface was also tested by Akcasayar [Ref. 10] in a 15-tube triangular pitched

bundle. The average bundle heat transfer performance approached the single tube

8



performance since all the individual instrumented tubes within the bundle

performed similarly for different operations. Akcasayar [Ref. 10] pointed out that

the reason for this behavior was the elimination of the convective effect of the

rising bubbles due to the bubble coating around the surface which produced

density populated nucleation sites. Another explanation for this behavior was given

by Fujita [Refs. 11, 12]. He points out that, since the nucleation and convective

effects each have their own area of influence, if the nucleation site density is small,

then the area available for convective effects will be large. As a result of the

excellent nucleation characteristics of a porous coated surface, very large

nucleation site density leaves very little area for convective effects resulting in an

unnoticeable effect when comparing bundle with single tube performance.

Akcasayar [Ref. 10] repeated the finned tube experiment that was done by

Anderson [Ref. 7], using the same finned tubes (19 fins per inch) and the same

refrigerant (R-114). Akcasayar's [Ref. 10] High Flux tube and finned tube

experiment results are shown in Figures 2.3 and 2.4.

Another concern about tube bundle studies is the effect of oil contamination

on these enhanced surfaces. Refrigeration systems having hermetically sealed

compressors always allow a certain amount of oil to leak into the evaporator

section; the effect of this oil contamination on the boiling performance of these

surfaces must therefore be clearly established. The boiling process, especially

when oil is present, is extremely complex and is almost impossible to treat

theoretically.
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Stephan [Ref. 13] reported the influence of oil on the boiling heat-transfer

coefficient of R-1 2 and R-22 using a smooth horizontal plate as the boiling surface.

He reported up to a 50% reduction in the boiling coefficient with 9% oil by weight,

while 50% oil caused a 90% reduction. Henrici and Hesse [Ref. 14] conducted

experiments involving boiling of R-1 14 in the presence of oil from a smooth copper

tube. They reported a decrease of up to 20% (depending upon the heat flux) in

the boiling coefficient with 1% oil. Danilova and Dyundin [Ref. 15] found that oil

contamination had an adverse effect on the heat-transfer in finned tube bundles.

Depending upon the operating temperature, 8% oil (by weight) caused up to a

50% decrease in heat-transfer.

Anderson [Ref. 71 reported that the presence of oil (up to 3% by mass)

improved the heat transfr. performance of smooth and finned tube bundles.

Furthermore, at an oil concentration of 10%, only a slight degradation of heat-

transfer (when compared to the pure R-1 14 case) was found. He obtained

maximum oerformance at an oil concentration of around 2% in the case of the

smooth tube bundle and around 3% in the case of finned tube bundle. Anderson's

[Ref. 7] oil contaminated smooth tube bundle experiment results are shown in

Figure 2.2.

For a single High Flux tube, Reilly [Ref. 3] found that the presence of oil

delayed considerably the onset of nucleate boiling, while this delay was quite small

for a single smoot,. tube. The presence of oil resulted in a reduction of up to a

35% in the boiling heat-transfer coefficient of the High Flux tube at a practical heat

10



flux of 30 kW/m 2. The boiling heat-transfer coefficient of the High Flux. tube was

about seven times greater than that of the smooth tube with up to 10% oil over the

prac'ical range of heat flux.

Akcasayar [Ref. 10] reported that oil addition affected the finned tube bundle

performance positively, particularly at high heat fluxes. Bundle performance

increased 1.8 times with 3% oil contamination compared to pure R-1 14 at the

maximum heat flux level. At low heat flux applications, the positive effect is

diminished. For 6% and 10% oil concentrations, the performance of the bundle

decreased to a value slightly below the pure R-1 14 condition. Akcasayar's [Ref. 10]

finned tube experiment results with oil contamination are shown in Figure 2.3.

On the other hand, during High Flux tube bundle experiments, Akcasayar

[Ref. 10] found that the effectiveness of the High Flux tube bundle degraded with

increased amounts of oil. The degradation was especially significant at high heat

fluxes with 6% and 10% oil concentrations. He pointed out that, at a heat flux of

30 kW/m 2, a 28% and 47% degradation of pure R-1 14 was found at 6% and 10%

oil concentrations respectively. Above a heat flux of 30 kW/m 2, the High Flux tube

degraded so much that the performance of the finned tube bundle became better

for a 6% or greacer oil concentration. His High Flux tube bundle results with oil

contamination are shown in Figure 2.4.

Marto and Memory [Ref. 3] and Murphy [Ref. 2] tested a single Turbo-B tube

at various oil concentrations in R-1 14. They found out that, at a practical heat flux

of 30 kW/m 2, the Turbo-B tube showed essentially the same pool-boiling

11



enhancements as the previously tested High Flux tube. However, the Turbo-B tube

outperformed the High Flux tube at lower heat fluxes, while the High Flux tube

showed superior performance at higher heat fluxes with oil concentrations of 6%

or less. There is currently no data available in the literature for Turbo-B tubes

performing in a bundle.
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Ill. EXPERIMENTAL APPARATUS

A. TEST APPARATUS OVERVIEW

The test apparatus was designed by Zebrowski [Ref. 16], and built by

Murphy [Ref. 2] for both boiling and condensation experiments. The schematic

view of the experimental apparatus is shown in Figure 3.1; the details of the

system were given in the references mentioned above. Consequently, only a brief

description of the apparatus, concentrating on the evaporator section itself is given

here.

As seen in Figures 3.1 and 3.2, the condenser consists of four instrumented

horizontal condenser tubes and five auxiliary copper coils, all cooled by a mixture

of water and ethylene glyco. Each of the tubes and coils can be operated

separately when required. Vapor from the evaporator enters the condenser section

through a "riser" and is guided both axially and circumferentially to the top of the

condenser by a vapor shroud. After condensation, the condensate returns to the

evaporator by gravity. Coolant flow rate to the condenser is varied to maintain the

system pressure near atmospheric conditions. Other schematics of the system are

given in Figures 3.3 to 3.5.

The evaporator was designed to simulate a small portion of a flooded

refrigerant evaporator. It has a kettle reboiler type of design and consists cf four

17



individually-controlled sets of heaters. The description of these heaters is given in

Table 3.1.

Power is supplied separately to each set of heaters by using a STACO 240V,

23.5 KVA rheostat controller. Depending Upon the requirements, they could also

be powered altogether. Desired numbers of auxiliary, simulation, instrumented or

active tube bundle heaters could also be operated independently by using circuit

breakers.

The instrumented tubes were manufactured locally. They consist of an outer

test tube shell (with the enhanced surface), an inner copper cylindrical sleeve and

a cartridge heater push-fitted in the center. The outer diameter of the copper

sleeve was machined 0.005 in smaller than the inner diameter of the outer test

tube shell. The copper sleeve had six equally spaced 1 mm square channels

machined at 60 degree increments around its circumference. Figure 3.6 shows the

position of the thermocouple grooves in addition to the position of one evaporator

tube in the tube block. The copper sleeve and tube were bonded together with

eutectic lead-tin (50:50) solder. This solder was chosen for its strength, low melting

temperature, and favorable heat-transfer characteristics. The evaporator and

condenser both have glass windows to permit easy viewing.

B. DATA ACQUISITION SYSTEM/INSTRUMENTATION

A Hewlett-Packard HP-349A Data Acquisition System and HP-9125 Computer

were used for data collection. As described by Akcasayar [Ref. 10], Type-T
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copper-constantan thermocouple measurements (mvolts) were made on the HP-

349A with the relay multiplexer/assembly equipped with thermocoup!3

compensation. A 20-channel relay multiplexer card was used to measure voltage

taken from separate sensors measuring tube bundle, simulation and auxiliary

heater potential. Auxiliary and simulation heater (total) amperages were each

measured using an American Aerospace Control (AAC) current sensor. The

currents of each instrumented tube heater were measured using five identical

current sensors.

Computer channel assignments for data acquisition and array assignments

are given in Table 3.2.

C. AUXILIARY EQUIPMENT

1. 8-Ton Refrigeration Unit

This refrigeration unit was used to cool a 1.8m3 reservoir sump of

ethylene-glycol/water (60:40 by volume) and bring it to the desired working

temperature (less than -10 C).

2. Ethylene-Glycol/Water Mixture

This mixture was used as coolant to remove heat from the condenser.

3. Pumps

Two pumps were used in the coolant system to pump the coolant from

the sump into the condenser. Condenser tubes were fed by pump #1 while

condenser coils were fed by pump #2. The coils in the refrigerant storage tanks
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were also fed by pump #2. They were especially needed during the transfer of

refrigerant from the evaporator to the storage tank.

4. Flowmeters

Four calibrated float-type flowmeters, connected to pump #1, were used

to control the coolant flow rate passing through the four condenser tubes. Another

flowmeter was used to control the total coolant flow rate passing through the

condenser coils supplied by pump #2.

D. GEOMETRY OF ENHANCED SURFACE TUBES USED

1. High Flux Tube

Outside diameter = 15.8 mm

Inside diameter = 11.6 mm

Porous metal film thickness 0.025 mm (approximately)

Enhanced surface length = 203.2 mm

2. Turbo-B Tube

Outside diameter = 14.15 mm

Inside diameter = 12.7 mm

Enhanced surface length = 203.2 mm
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TABLE 3.1. EVAPORATOR HEATERS

HEATERS NUMBER POWER/(EACH)

Instrumented Heater Tubes 5 1000 Watts

Active Bundle Heaters 10 1000 Watts

Auxiliary Heaters 4 4000 Watts

Simulation Heaters 5 4000 Watts

TABLE 3.2. COMPUTER/DATA ACQUISITION ASSIGNMENT

Thermocouple Description Channel Array in code

Vapor 00 T(0)

Vapor 01 T(1)

Vapor 02 T(2)

Liquid 03 T(3)

Liquid 04 T(4)

Tube 1, No. 1 40 T(5)

Tube 1, No. 2 41 T(6)

Tube 1, No. 3 42 T(7)

Tube 1, No. 4 43 T(8)

Tube 1, No. 5 44 T(9)

Tube 1, No. 6 45 T(10)

Tube 2, No. 1 46 T(11)

Tube 2, No. 2 47 T(12)

Tube 2, No. 3 48 T(13)

Tube 2, No. 4 49 T(14)

Tube 2, No. 5 50 T(15)

Tube 2, No. 6 51 T(16)

Tube 3, No. 1 52 T(17)

21



TABLE 3.2 (cont.)
Tube 3, No. 2 53 T(1 8)

Tube 3, No. 3 54 T(1 9)

Tube 3, No. 4 55 T(20)

Tube 3, No. 5 56 T(21)

Tube 3, No. 6 57 T(22)

Tube 4, No. 1 58 T(23)

Tube 4, No. 2 59 T(24)

Tube 4, No. 3 60 T(25)

Tube 4, No. 4 61 T(26)

Tube 4, No. 5 62 T(27)

Tube 4, No. 6 63 T(28)

Tube 5, No. 1 64 T(29)

Tube 5, No. 2 65 T(30)

Tube 5, No. 3 66 T(31)

Tube 5, No. 4 67 T(32)

Tube 5, No. 5 68 T(33)

Tube 5, No. 6 69 (4

Tube 1 30 Amp(O)

Tube 2 31 Amp(1)

Tube 3 32 Amp(2)

Tube 4 33 Amp(3)

Tube 5 34 Amp(4)

Active 35 Amp(S)

Active 36 Amp(6)

Active 37 Amp(7)

Active 38 Amp(B)
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TABLE 3.2 (cont.)

Active 39 Amp(9)

Auxiliary Heaters 25 Amp(10)

Simulation Heaters 26 Amp(1 1)

Voltage Sensor Description Channel Array

Instrumented Active 27 Volt(O)

Simulation Heaters 28 Volt(l)

Auxiliary Heaters 29 Volt(2)
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IV. EXPERIMENTAL PROCEDURES

A. MANUFACTURE OF INSTRUMENTED EVAPORATOR TUBES

The tubes used for the High Flux tube bundle experiments were

manufactured by Akcasayar [Ref. 10]. As he pointed out, even though the same

manufacturing technique was used, the wall temperature variations for the finned

tubes were more homogenous than the High Flux tubes. As a result of this, large

uncertainties were associated with the High Flux tube data. Keeping this in mind

after a couple of different methods were tried, the temperature distribution

obtained with the following technique was accepted as satisfactory and used for

resoldering the High Flux tubes and manufacturing the Turbo-B tubes.

As a first step, type-T copper-constantan thermocouples were positioned in

1mm x 1 mm grooves machined on the outer surface of the copper sleeve. A

cartridge heater was inserted into the copper sleeve using a push fit. The

thermocouples were secured in place by peening over the edges of the grooves

in different locations using a blunt punch. The resulting imperfections were then

removed with fine (400 grit) sand paper.

The copper sleeve, having been instrumented with thermocouples and a

cartridge heater, was placed on two wooden blocks. The thermocouple channels

were filled with the solder flux (50% tin and 50% lead). Great care was exercised

to fill the channels entirely. The outer surface of the sleeve was then brushed with
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solder flux to insure good wetting. The tube was placed vertically on top of a 0.5

inch long aluminum plug (to provide proper placement of the copper sleeve inside

the tube case) and the copper sleeve was inserted from the top until it touched the

aluminum plug. The tube, containing the copper sleeve, was placed horizontally

in a cylindrical oven, open at both ends. The thermocouples were attached to a

Newport temperature indicator to monitor the temperature increase when the oven

was heated. The heat was then applied making sure that the wall temperature did

not exceed 500 F which was the melting temperature of the thermocouple sheath.

At 400 F, the solder started to melt and the tube was taken out of the oven and

quenched from the bottom using a wet cloth. The oven was then placed vertically

between two supports, keeping the bottom of the oven clear. The tube was

inserted into the oven from underneath keeping the bottom section quenched.

When the tube temperature reached 400 F, the solder started to re-melt and flow

down inside the tube. Further solder was then applied from the top of the tube to

a designated level. At this point, the tube was removed and quenched over its

entire length using a wet cloth. After this initial quenching, the tube was left to cool

down in air.

B. INSTALLATION OF EVAPORATOR TUBES AND TUBE SUPPORT BLOCK

Before removing the tube bundle from the evaporator, the support block,

backing plate and front glass viewing window were carefully removed. The tube

bundle was taken out from the back of the boiler. It consisted of five instrumented
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evaporator tubes, 10 actively heated evaporator tubes, and 20 dummy smooth

tubes. The seal was provided by O-rings compressed between the tube support

block and the stainless-steel backing plate. Once the evaporator tubes were

installed in the support block, without tightening the backing plate nuts, the block

was guided into the evaporator section. The block was then levelled and all bolts

were tightened appropriately. To replace the front window, very small, equal

torques were applied circumferentially to each nut, in turn, in the outer ring

support. Each heated tube was pushed forward so as to touch the front-viewing

window. The backing plate was then tightened and the O-rings compressed,

providing a good vacuum in the system.

C. SYSTEM LEAKAGE CHECK

After the system was isolated from the atmosphere and system integrity was

restored, a Seargent Welch 10 SCFM vacuum pump was turned on and the

pressure in the system was taken down to 29 in-Hg vacuum. The valves R-1 and

R-8 (Figure 3.2) were kept open in order to achieve this vacuum. These valves

were then secured and the system was left untouched for at least 10 hours to see

if there was any leakage. If there was significant leakage, then the system was

pressurized with air to 15 psi (through valve R-2). Large leaks were then detected

by simply listening to the air coming from the system. If the leaks were small, the

system was charged with R-1 14 vapor at a pressure of 5-7 psi through valve R-2.

A freon detector was then used to find any minor leaks. After all leaks had been
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secured, the system was again subjected to a vacuum for 10 hours. When the

system passed the above vacuum test, Freon fill from the reservoir was started.

D. FREON FILL

A Freon storage tank was used to store the R-114 during experiments.

Storage prevented discharge of the R-114 into the atmosphere and made

experimentation less costly. To fill the evaporator with R-1 14 from the storage tank,

the ethylene glycol/water mixture was first cooled to a temperature less than -10

C. Both condenser pumps were put into operation thus allowing coolant to flow

through the condenser section. Valves (connecting the storage tank to the

evaporator) were opened and Freon fill started. At the start of the fill, the pressure

in the storage tank was about 13-14 psig; the system was under 29 in-Hg vacuum.

Due to this pressure difference, the liquid (R-1 14) flowed from the storage tank into

the evaporator. Approximately 20 to 30 minutes later, when the pressures were

equalized, the transfer of Freon was complete. Then valves R-4 and R-6 were

closed. Additional Freon could be added from a Freon cylinder using valve R-2 if

required (there was always a small loss of Freon when transferring from the

storage tank to the evaporator or vice-versa).

E. FREON REMOVAL

For tube replacement, maintenance or clean-up purposes, the R-1 14 was

removed to the storage tank. The ethylene glycol/water mixture temperature was
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cooled to less than -10 C: valves R-7 and R-8 were opened and the vacuum pump

was turned on to put the storage tank under vacuum. Then, R-1 14 flowed from the

evaporator to 'xhe storage tank because of pressure difference.

F. SYSTEM CLEAN-UP

After removal of the R-1 14 from the evaporator, valve R-5 was opened and

any leftover R-1 14/oil mixture was drained into a container and dumped. A fan was

on at all times during this operation to disperse the small quantity of R-1 14 vapor

still in the system.

To clean the system, Freon R-1 13 (due to its higher boiling temperature

compared with R-1 14), acetone and water were used.

For the first phase of clean-up, the boiler was filled with R-1 13 to a level 5 cm

above the tube bundle and was boiled for 30 minutes. After boiling, air was put

into the system via valve R-2. Using this excess pressure, the R-1 13 (and any

residual oil) was drained to a waste drum through valve R-5. The mixture was then

taken from the drum and placed in a distillation bottle. Heat was applied and R-1 13

was boiled off and collected for re-use. The oil which accumulated at the bottom

of the distillation bottle was then dumped. This distillation process was then

repeated.

After completing the R-1 13 clean, all electrical connections to the system

were disconnected and the front-viewing glass window was removed. The tube

bundle and dummy tube rack were then taken out. The inside surface of the boiler
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Excess acetone was removed through valve R-5 and stored in a waste container.

The system was then air dried with a blower.

Having removed the tubes from the tube bundle, bundle and rack were

individually washed with water and then acetone. Tubes were also cleaned using

acetone and a soft bristled toothbrush, exercising care not to interfere with the

tube surface.

After cleaning all pieces of the system separately, the R-1 14 was transferred

into the evaporator through standard procedures mentioned earlier (keeping the

tube bundle outside). The storage tank was then opened and cleaned using water

and acetone. The R-1 14 was then transferred back to the storage tank by slow

boiling using the simulation heaters. This second transfer was complete ,vithin five

hours. Any oil left in the evaporator (which was a small amount) was drained and

dumped. The entire clean-up procedure was then repeated to make sure that the

oil quantity in the evaporator was negligible.

G. GENERAL OPERATION

After the system had been cleaned, the boiler was filled with R-1 14 to a level

of 10 cm above the top tube in the bundle, corresponding to a mass of 60.3 kg

of R-1 14 at -15 C. Prior to operating the system, the 8-ton refrigeration unit was

run for an hour to reduce the ethylene-glycol/water mixture temperature in the

sump to a value of less than -10 C. The pressure in the evaporator was 12 to 14

psig. When the sump temperature was sufficiently low, the data acquisition system
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psig. When the sump temperature was sufficiently low, the data acquisition system

and computer were turned on. The system pressure was slowly lowered by

allowing the coolant to pass through the condenser tubes. This slow cooling is

especially important for runs using "increasing heat flux" from a secured condition

(as explained in Chapter V, Surface Preparation Technique -C ) to ensure that the

nucleation sites were not activated prematurely.

Boiling in the evaporator initially started due to the pressure drop without

applying any heat flux. At the required saturation temperature of 2.2 C, the heaters

were switched on to the desired setting and data were taken. The heat flux was

then slowly increased by adjusting the rheostat. For observation of "boiling

hysterisis" effect, the data were taken with very small heat flux increments, waiting

at least 5 minutes at each heat flux to attain steady conditions. At critical regions

such as the onset of nucleate boiling, at least two readings were taken. The bundle

was continuously monitored through the glass window and compared to the data

printout to observe trends.

H. OIL ADDITION

During the Turbo-B tube bundle experiments, successive amounts of oil were

added into the evaporator. Since the weight of the refrigerant in the evaporator

was 60.3 kg, the amount of oil corresponding to 1% by weight was measured as

670 ml, 2% as 1340 ml etc. The oil was syphoned into the evaporator from a

storage drum through valve R-3 by reducing the system pressure to less than 15
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in-Hg vacuum. Ensuring that no air entered the system, the scale of the measuring

container was observed to see that the appropriate amount of oil was added to

the refrigerant. Valve R-3 was secured after oil addition.

1. DATA REDUCTION PROCEDURES

The data reduction program "DRP4" was used during the experiments for

processing the data collected. The program was written in HP Basic 3.01 and run

on an HP-9000 series computer. The characteristics and capabilities of this

software and the entire listing of the program is provided by Anderson [Ref. 7].
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V. RESULTS AND DISCUSSION

A. GENERAL DESCRIPTION

During the experiments, both the High Flux and Turbo-B tubes were tested

at a saturation temperature of 2.2 C. All runs were conducted using refrigerant (R-

114) at slightly under atmospheric pressure.

The onset of nucleate boiling was observed through the front g!ass viewing

window; this was linked to the sudden change in the wall superheat value given

by the thermocouples embedded in the tube and indicated on the computer

printout. During these experiments, the data were taken from five instrumented

tubes, numbered consecutively 1 to 5 from the top downward.

The data taken by Akcasayar [Ref. 10] simulated a continuously operating

air-conditioning system by using surface preparation technique-D as described in

the next section. During this thesis study, however, surface preparation technique-

C was used, simulating the initial start-up of a refrigeration system.

Naming of the fies used for data storage is similar to that of Akcasayar [Ref.

10]. Each file name is comprised of five sets of alpha-numeric characters, split up

as follows:

First set - tube type - HF (High Flux)
- TB (Turbo-B)

Second set - H - H (H. Eraydin data)
Third set - surface preparation - C (Increasing q")

- D (Decreasing q")
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Fourth set - % of oil in Freon (by weight) - 3. 1, 2, 3, 6, 10
Fifth set - number of activated tubes - 1 (one tube activated)

- 2 (two tubes activated)
- 3 (three tubes activated)
- 4 (four tubes activated)
- 5 (five tubes activated)
- 6 (entire bundle activated)
- 7 (bundle and simulation

heaters activated)

To give an example, the file name "TBHC62" indicates that Turbo-B tubes,

data taken by H. Eraydin, increasing heat flux, 6% oil -id two tubes activated.

Exception to this file naming method is the data set of "TBHCD01." This file

cci-itained ths data for both increasing the decreasing heat flux.

Filenames used on the figures start with the letter of "p" to indicate that they

are plotting files.

B. R-114 BOILING FROM A HIGH FLUX TUBE BUNDLE

The first set of data using a High Flux tube with R-1 14 was obtained by Reilly

[Ref. 9] in an apparatus designed for a single tube. These experiments were then

repeated in the bundle apparatus by Akcasayar [Ref. 10]. Comparison of the

results showed that the performance enhancement due to bundle operation was

not significant (see Ref. 10). The average bundle heat-transfer performance

approached the single tube performance since all instrumented tube performances

remained nearly the same for different operations in the bundle.

Data were obtained by Akcasayar [Ref. 10] using surface preparation-D to

simulate a continuously operating air-condition system. This surface preparation
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entailed initially boiling of the R-1 14 for 30 minutes at a maximum heat flux of 75-

100 kW/m2. Data were then taken in decreasing steps of heat flux down to a

minimum value of 1 kW/m2. In this way, nucleation sites within the bundle remained

active, thus preventing any "boiling hysterisis."

During this thesis study, surface preparation-C was used to simulate L, ,e initial

start-up of a refrigeration system. This surface preparation required securing the

evaporator power for 24 hours and then slcwly attaining saturation conditions by

cooling the R-1 14. Data were then taken in small increasing heat flux increments.

After the maximum heat flux was reached, data were then also taken for

decreasing heat flux.

The first stage of the experiments was to determine the effect of

contamination on the heat-transfer capability of High Flux tubes. The apparatus

was cleaned first by simply distilling the oil by boiling off the R-1 14. The oil was

removed, the evaporator refilled and data taken. The system was then cleaned

more thoroughly using the full procedure laid out in Chapter IV. The evaporator

was recharged with R-1 14 and data taken. Figure 5.1 shows a noticeable

difference between the two data sets and demonstrates the importance of the

lengthy (and somewhat arduous) cleaning procedure that was subsequently

employed.

Figures 5.2 and 5.3 show the data for tube 1 operating alone within the

bundle for increasing and decreasing heat flux respectively. In the same figures,

the data taken by Reilly [Ref. 9] for a High Flux tube in the single tube apparatus
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are also included. The boiling curves of these two separate experiments agree

closely for both increasing and decreasing heat flux, with the single tube apparatus

results giving slightly better heat transfer performance at low and intermediate heat

flux. The differences seen between the curves are probably due to different bubble

circulation patterns experienced by each apparatus. Notice also in Figure 5.2 the

scatter obtained by Reilly [Ref. 9] at low fluxes. This demonstrates the difficulty in

taking data in this sensitive region at very low wall superheats (less than 0.5 K),

where the inaccuracies in the wall temperature distribution (due to thermocouple

error, or the fabrication/soldering process) may be as large as the temperature

difference being measured.

In Figure 5.4, the performance of tube 1 operating alone in High Flux, finned

[Ref. 10] and smooth [Ref 7] tube bundles are compared for increasing heat flux.

The comparison clearly exhibits the enhancement of nucleate boiling obtained with

the High Flux tubes. Note, however, in the natural convection region High Flux

tube has the smallest heat transfer coefficient comparing to other tubes. The small

value of wall superheat of around 1-3 K obtained with the High Flux tube during

nucleate boiling should be noted. This compares with values of 5-8 K and 8-20 K

for the finned and smooth tubes respectively. Furthermore, the onset of nucleate

boiling occurs at a heat flux of 1200 W/m 2 for the High Flux tube, compared to

much higher values of 20,000 W/m 2 and 7500 W/m 2 for the finned and smooth

tubes respectively. Also, the temperature overshoot for the finned tube is almost

15 K while for the High Flux tube a value of 6 K is seen. This behavior indicates the
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earlier (i.e., lower heat flux) activation of nucleation sites for the High Flux surface.

Also, the very low values of wall superheat associated with the High Flux tube

indicate that the number of nucleation sites is much greater, thereby increasing the

amount of heat that can be removed from the surface.

Figure 5.5 shows the results when tubes 1 and 2 are activated together,

again for increasing heat flux. The presence of another tube vertically below does

not seem to noticeably affect the performance of the upper tube either in the

natural convection or nucleate boiling regimes. Clearly, however, the natural

convection heat-transfer coefficient for tube 2 is less than tube 1, whereas the

nucleate boiling heat-transfer coefficient is slightly greater. Similar behavior to that

found in Figure 5.5 was observed for smooth tubes by Marto and Anderson [Ref

20]. They pointed out that this behavior might be explained by the close proximity

of the tubes influencing the velocity and temperature fields in the wake of a heated

tube. In addition, it should be noted that the start of nucleate boiling of the upper

tube increases the natural convection heat transfer coefficient of the lower tube

due to bubble pumping from the upper one.

Figure 5.6 shows the data when three tubes are activated. As with Figure 5.5,

the top tube in the bundle starts nucleating first: this causes a slight reduction in

wall superheat for tubes 2 and 3 which continue in the natural convection regime.

At a higher heat flux, tubes 2 and 3 start to nucleate at the same time. The

existence of two tubes vertically below tube 1 does not seem to influence the

natural convection behavior of this top tube. However, the presence of tube 3 does
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cause a slightly earlier transition to nucleate boiling for tube 1 and a slight delay

for tube 2. In addition, as shown in Figure 5.5, during nucleate boiling tube 2 gives

the best results.

As seen in Figures 5.7 and 5.8, an increase in the number of activated tubes

to 4 and 5 does not noticeably affect the bundle behavior over that seen with three

activated tubes.

For example, Figure 5.8 shows that tube 1 starts to nucleate first. This causes

a slight reduction in wall superheat for the other four tubes (probably due to the

bubble pumping action on tube 1 in turn causing a greater liquid circulation

around the bundle). The tubes then start nucleating in order, although it appears

that tubes 2, 3 and 4 start nucleate at a similar heat flux. As further tubes nucleate,

the wall superheats of the remaining tubes below reduce slightly. It can also be

seen from Figure 5.8 that the nucleate boiling curve is not the same for each tube:

tube 2 has the highest heat-transfer coefficient with tube 5 having a significantly

lower value. This behavior was repeated at all oil concentrations and also found

by Akcasayar [Ref. 10]. It should be noted here that as each tube nucleated, the

performance of the other tubes already nucleating was not altered.

Figures 5.9 and 5.10 show the data for the complete tube bundle (15 tubes

activated-test number 6) and the bundle plus simulation heaters (test number 7)

respectively. In the natural convection region, the behavior is much the same as

described above. However, it can be seen that the performance of tubes 3 and 4

deteriorate significantly in the nucleate boiling regime. It was presumed that this
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deterioration could either be a bundle effect or a temperature distribution/soldering

problem. The first possibility was further examined by altering the positioning of the

tubes. Each tube was moved down by 2 positions, i.e., 1 to 3, 2 to 4, 3 to 5, etc.

However, in this new arrangement, where tubes 3 and 4 became tubes 5 and 1,

it became evident that it was not a bundle effect (see Figure 5.11) as each tube

number (and not position) performed as before. Consequently, the reason for the

differences seen the figures had to be due to individual tubes. Similar behavior had

also been reported by Akcasayar [Ref. 10] who pointed out that the differences

in measured wall superheat could be due to increased temperature differences

between thermocouple readings around the tube (note that due to the low values

of wall superheat, poor temperature distribution around the tube could lead to

significant error).

The poor temperature distribution could be due to a number of reasons:

1. poor soldering technique (the soldering shoL. J hava been carried out either
in a vacuum or inert atmosphere, but no such facilities were available)
resulting in an oxide layer or even air gaps around thermocouple junction.

2. poor heater cartridge resulting in a non-uniform heat flux,

3. insufficient wall thickness (the tubes may not have sufficient wall thickness
to provide a uniform temperature distribution),

4. poor tube surface characteristics.

It was considered that reasons 2 and 3 were not likely. Reason 1 was

investigated further by using the new soldering technique described in Chapter IV.
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All the existing instrumented High Flux tubes were resoldered. Despite being

resoldered, these tubes still exhibited a significant deterioration in performance.

Consequently, it was felt that any maldistribution in the tube wall temperature

readings did not cause the behavior seen in the figures. It is more likely to be the

enhanced surface itself and it is planned to make up a new set of High Flux tubes

and retest this bundle in the future.

An interesting point is the fact that the deterioration seen in tubes 3 and 4 on

Figures 5.9 and 5.10 only occurs when the entire bundle is activated. This problem

does not occur when auxiliary and simulation heaters are not activated. The

reasons for this is not known.

Very little information is available in the literature regarding the onset of

nucleate boiling in a tube bundle, especially hysterisis effects and the influence of

surface preparation (past history) upon the incipient boiling condition. It is

therefore very difficult to draw a definite conclusion explaining the behavior seen.

More data are needed using these enhanced surfaces with other fluids, different

bundles, pool (i.e., liquid height) geometries and inlet qualities.

C. R-114/OIL MIXTURES BOILING FROM A TURBO-B TUBE BUNDLE

The performance of tube 1 activated alone, in pure R-1 14 within the bundle

is shown in Figure 5.12 for both increasing and decreasing heat flux. Above a heat

flux of 15 kW/m 2 the results are almost identical. The temperature overshoot for

increasing heat flux is not as significant in magnitude as the High Flux tube. Since
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the nucleation sites remain active, overshoot is not seen for decreasing heat flux,

thus creating the classic hysterisis curve. Despite not having a striking overshoot,

the value of gradual overshoot is about 1 K for increasing heat flux.

Marto and Memory [Ref. 3] and Murphy [Ref. 2] tested the Turbo-B tube in

pure R-1 14 and R-1 14/oil mixtures using the single tube apparatus. Their results

for pure R-1 14 are plotted in Figure 5.13 for decreasing heat flux and are

compared with the present data. Although the boiling curves are parallel, it can be

seen the single tube apparatus data result in better heat transfer performance. This

improvement could be due either to slightly different tube manufacturing

techniques or the different flow patterns set up in the more confined single tube

apparatus.

The influence of lower tubes on the performance of tube 1 is shown in

Figures 5.14 and 5.15 for increasing and decreasing heat flux respectively. Apart

from the natural convection region seen in Figure 5.14 (where there seems to be

no regular "pattern"), the boiling curves are nearly parallel for the entire heat flux

range in both figures. It appears that the activation of successive tubes below the

top tube increases the heat transfer coefficient by an equal amount. This increase

is probably attributed to better flow circulation within the bundle. For the natural

convection region, the wall superheat varias significantly depending on the number

of tubes activated (this behavior was very repeatable). However, this variation is

quite irregular and the reason for this is not known at the moment, but could be

an oscillatory bundle effect.

46



Figure 5.16 shows the boiling characteristics of tubes 1 and 2 activated

together for increasing heat flux. The observed behavior is very similar to the High

Flux tube results in that initially the upper tube starts nucleating, causing a

noticeable increase in heat transfer coefficient of the lower tube, even though this

lower tube remains in the convection region. The onset of nucleate boiling on the

lower tube does not, however, affect the heat-transfer coefficient for the upper tube

already nucleating. It is thought that the start of nucleate boiling on the upper tube

before the lower tube i. due to the influence of the closely-spaced tubes upon the

velocity and temperature fields in the wake region of a heated tube. Notice also

that in the nucleate boiling region, both tubes perform very similarly with the lower

tube slightly better at high heat flux (more than 20 kW/m), but slightly worse at

intermediate heat flux.

As seen in Figure 5.17 for increasing heat flux, the activation of tube 3 seems

to cause a significant reduction in the wall superheat of tube 1 in the natural

convection regime. However, when Figure 5.17 is compared to Figure 5.18 (4

tubes activaL.,. u,;l oe;visr ; not :p--c.ted and suggests that there is no

regular pattern in this region. It appears that the convection region is heavily

affected by operating conditions.

The operation of the whole bundle (15 tubes activated) and bundle plus

simulation heaters (Figures 5.19 and 5.20) does reduce the temperature overshoot

of tube 1 dramatically. However, the remaining tubes still clearly exhibit a

temperature overshoot. This is probably due to significant flow circulation within
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the bundle triggering an early change to nucleation for tube 1. The behavior of the

Turbo-B tubes in pure R-1 14 for decreasing heat flux is shown in Figures 5.21

through 5.24. These figures verify the increasing heat flux behavior: for a heat flux

greater than 20 kW/m2, tube 2 gives the best heat transfer performance whereas

at low heat fluxes, tube 1 prevails. Lower tubes (3, 4 and 5) showed poorer

performance for the whole range of heat flux, with tube 4 giving the largest values

of wall superheat (lowest heat transfer coefficient). This is probably due (as with

the High Flux tubes) to a nonhomogeneous tube wall temperature distribution as

indicated by the relatively high wall thermocouple values for this tube.

Figures 5.25 and 5.26 show the performance variation of the top tube (tube

1) with various oil concentrations added to the R-1 14 for increasing and

decreasing heat flux respectively. Figure 5.26 shows that with decreasing heat flux,

even 1 % oil addition causes a significant amount of degradation especially at low

heat flux. The performance curve stays almost the same for 2% oil addition, but

deteriorates further for 3% oil at low heat flux. As seen in Figure 5.25 it is very

difficult to observe the effect that oil contamination has in the natural convection

region on a Turbo-B tube within a bundle. The presence of 3% oil seems to cause

a significant degradation in natural convection regime. On the other hand, the

addition of 6% oil gives significant increase in heat transfer coefficient comparing

to that of pure R-1 14: there seems again to be no regular pattern for the

convection region.
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Marto and Memory [Ref. 3] and Murphy [Ref. 2] also investigated the effect

of oil contamination on Turbo-B tubes boiling in the single-tube apparatus. They

reported very similar behavior to that mentioned above.

The effect of oil on pool-boiling performance of R-1 14 from enhanced

surfaces was investigated by Wanniaroichchi, Marto and Reilly [Ref. 17] in detail.

They reported that, when boiling occurs within large re-entrant cavities, channels

or pores (such as High Flux and Turbo-B tube surfaces), the more volatile R-1 14

liquid evaporates leaving behind an oil rich mixture in the vicinity of tube surface

where the actual evaporation takes place. The presence of this oil-rich layer within

the cavities creates a resistance to further heat-transfer, thereby degrading the

boiling performance.

In Figure 5.27, the performance of the Turbo-B tube bundle (15 tubes

activated) is shown for different oil concentrations. Here the heat transfer

coefficient is plotted against the heat flux. The addition of 3% and 6% oil causes

a noticeable decrease in the heat transfer coefficient at all levels of heat flux:

however, the degradation is much more noticeable and significant at low heat flux.

D. PERFORMANCE COMPARISON OF THE SMOOTH, FINNED, HIGH FLUX

AND TURBO-B TUBE BUNDLES.

The boiling curves (i.e., heat transfer coefficient vs heat flux) for the smooth,

finned, High Flux and Turbo-B tube bundles (15 tubes activated) are shown in

Figures 5.28 through 5.30. The first thing to notice (as pointed out by Marto and
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Memory [Ref. 3]) is that there appear to be three distinct types of surface: smooth,

ordinary integral finned and restructured finned/porous surfaces. The results using

pure R-1 14 indicate that the heat transfer performance for both High Flux and

Turbo-B tube bundles are similar and outperform both smooth and finned tube

bundles by a factor of up to 5 and 3 respectively. Despite having slightly lower

heat transfer coefficients at low heat flux, the High Flux tube bundle exhibits a

higher heat-transfer performance than the Turbo-B tube bundle at the more

practical high heat flux values.

Average bundle heat-transfer coefficients of each individual tube type are

tabulated for various oil concentrations in Table 5.1 through 5.4 for a practical heat

flux of 30 kW/m 2. As seen in Figure 5.29 the addition of 3% oil causes the boiling

curves of High Flux, Turbo-B and finned tubes to merge at high heat fluxes. With

6% oil addition, the performance of High Flux tubes degrade significantly,

especially at high heat flux greater than 40 kW/m 2. Consequently both Turbo-B and

finned tube bundles outperform the High Flux tube bundle for high fluxes and for

oil concentrations equal or greater than 6%. The reason for large degradation in

performance of the High Flux tubes at high heat flux and high oil concentration is

probably due to the fact that diffusion of oil from the surface is overwhelmed by

the oil migration into the surface (caused by boiling mechanism), leaving a thick

oil-rich layer within the numerous pores of the tube. For the Turbo-B tubes,

diffusion from the surface is easier, and although some degradation (over the pure
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R-1 14 case) is seen at high oil concentrations, it is not as severe as with the High

Flux tubes.

TABLE 5.1. BOIUNG HEAT TRANSFER COEFFICIENTS AND
ENHANCEMENT RATIOS FOR SMOOTH TUBE BUNDLE AT A HEAT FLUX

OF 30 KW/M 2 .

% Oil Bundle h (kW/m 2K) Enhancement Ratio

0 2.59 1.00

1 3.21 1.24

2 3.72 1.44

3 3.60 1.39

6 3.19 1.23

10 2.57 0.99

TABLE 5.2. BOILING HEAT TRANSFER COEFFICIENTS AND
ENHANCEMENT RATIOS FOR FINNED TUBE BUNDLE AT A HEAT FLUX

OF 30 KW/M 2 .

% Oil Bundle h (kW/m2 K) Enhancement Ratio

0 6.56 1.00

1 8.31 1.27

2 10.38 1.58

3 10.80 1.65

6 10.52 1.60

10 9.03 1.38
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TABLE 5.3. BOIUNG HEAT TRANSFER COEFFICIENTS AND
ENHANCEMENT RATIOS FOR HIGH FLUX TUBE BUNDLE AT A HEAT

FLUX OF 30 KW/M 2.

% Oil Bundle h (kW/m2K) Enhancement Ratio

0 16.61 1.00

1 14.17 0.85

2 14.40 0.87

3 14.50 0.87

6 13.72 0.82

10 8.75 0.53

TABLE 5.4. BOILING HEAT TRANSFER COEFFICIENTS AND
ENHANCEMENT RATIOS FOR TURBO-B TUBE BUNDLE AT A HEAT FLUX

OF 30 KW/M2 .

% Oil Bundle h (kW/m2K) Enhancement Ratio

0 13.85 1.00

1 13.20 0.95

2 12.70 0.92

3 12.60 0.91

6 11.82 0.85
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Nucleate pool boiling data of pure R-114 and R-114/oil mixtures were

obtained using a small bundle of High Fiux and Turbo-B tubes. The data were

taken using surface preparation-C (to simulate start-up of an air-conditioning

system) for increasing heat flux and surface preparation-D (to simulate a

continuously operating air conditioning system) for decreasing heat flux. The

analysis of the data taken during this thesis study led to the following conclusions.

1. The presence of lower heated tubes in a High Flux tube bundle does not

noticeably affect the performance of upper tubes for both increasing and

decreasing heat flux.

2. Onset of nucleate boiling for the upper tubes in a bundle enhances the

heat transfer coefficient of lower non-nucleating tubes within a High Flux tube

bundle.

3. In natural convection regime, since the convective contribution is highest

toward the top of the tube bundle due to increased velocities and flow

acceleration, the nearest tube to the top of the bundle, namely tube 1, always has

the best heat transfer performance.



4. After the onset of nucleate pool boiling, tube 2 exhibits the best

performance presumably owing to the height of the R-1 14 liquid level inside the

evaporator section.

5. Similar to smooth tube bundle experiment results [Ref. 20], in a High Flux

tube bundle experiencing nucleate boiling, the chaotic 'vo phase bubble motion

may create favorable conditions for secondary nucleation.

6. Use of the simulation heaters at the bottom of the High Flux tube bundle

to provide an inlet vapor quality does not elim;. ate "boiling hysteresis" in contrast

to the smooth tube buindle (see [Ref. 20]). "Hysterisis" patterns exist between

increasing and decreasing heat flux for the High Flux tube bundle.

7. The presence of additional activated tubes slightly enhances the heat-

transfer capability of the Turbo-B bundle in nucleate boiling regime for both

increasing and decreasing heat flux. However, behavior of the Turbo-B tube

bundle does not have a regular pattern in the natural convection regime. Natural

convection in a tube bundle is a complex phenomenon and deserves further

investigation.

8. Activation of the simulation heaters does not eliminate "boiling hysterisis"

for the Turbo-B tubes (similar to High Flux tubes behavior). The additional vapor

quality helps to reduce the temperature overshoot of tube 1 only.

9. The effectiveness of the Turbo-B tube bundle degraded with increased

amounts of oil. At a practical heat flux of q"=30 kW/m 2 a 9% and 15% degradation

from pure R-1 14 was observed for 3% and 6% oil concentrations respectively.
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B. RECOMMENDATIONS

1. The High Flux tube bundle experiments should be repeated with a new set

of High Flux tubes, preferably soldering the instrumented tubes in a vacuum oven

to provide a better tube wall temperature distribution.

2. The effect of pool height in the evaporator should be investigated.

3. A more det':ed study ui cirtuiation characteristics within the bundle

should be made to explain the anomalies seen, especially in the natural convection

region.

4. The reasons for the poor performance of the condenser tubes in the

condenser section should be thoroughly investigated and rectified.

5. The main and auxiliary condenser pumps should be overhauled to

eliminate noise.

6. Taking into consideration the side effects of R-1 14 (and other refrigerants),

the ventilation system of the laboratory should be improved.
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APPENDIX A. LISTING OF DATA FILES

TABLE A.1. DATA FILE NAMES OF THE TURBO-B AND HIGH FLUX TUBE
RUNS.

File Name File Name Number Number Percent Number Number of
of Data of Heated Oil of Active Simulated
Points Tubes Pairs Tubes

TBHC01 TBHDO1 32/18 1 0 0 0

TBHC02 TBHDO2 27/17 2 0 0 0

TBHC03 TBHDO3 31/20 3 0 0 0

TBHCO4 TBHDO4 28/20 4 0 0 0

TBHCO5 TBHDO5 34/18 5 0 0 0

TBHCO6 TBHDO6 29/14 5 0 5 0

TBHC07 TBHD07 23/14 5 0 5 5

TBHC11 TBHD11 27/15 1 1 0 0

TBHC12 TBHD12 22/12 2 1 0 0

TBHC13 TBHD13 19/18 3 1 0 0

TBHC14 TBHD14 17/18 4 1 0 0

TBHC15 TBHD15 24/18 5 1 0 0

TBHC16 TBHD16 18/16 5 1 5 0

TBHC17 TBHD17 15114 5 1 5 5

TBHC21 TBHD21 19/18 1 2 0 0

TBHC22 TBHD22 20/20 2 2 0 0

TBHC23 TBHD23 19/20 3 2 0 0

TBHC24 TBHD24 21/20 4 2 0 0

TBHC25 TBHD25 20/20 5 2 0 0

TBHC26 TBHD26 17/16 5 2 5 0

TBHC27 TBHD27 13/16 5 2 5 5

TBHC31 TBHD31 20/19 1 3 0 0

TBHC32 TBHD32 19/18 2 3 0 0

TBHC33 TBHD33 15/18 3 3 0 0
TBHC34 TBHD34 17/18 4 3 0 0

TBHC35 TBHD35 18/19 5 3 0 0

TBHC36 TBHD36 19/17 5 3 5 0

TBHC37 TBHD37 15/14 5 3 5 5
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Fiie Name File Name Number Number Percent Number Number of

of Data of Heated Oil of Active Simulated
Points Tubes Pairs Tubes

TBHC61 TBHD61 20/20 1 6 0 0

TBHC62 TBHD62 17/18 2 6 0 0

TBHC63 TBHD63 14/16 3 6 0 0

TBHC64 TB!. D4 18/20 4 6 0 0

TBHC65 TBHD65 17/18 5 6 0 0

TBHC66 TBHD66 15/18 5 6 5 0

TBHC67 TBHD67 14/15 5 6 5 5

(1) HFHDO1 - 10 1 0 0 0

(1) HFHDO2 - 10 2 0 0 0

(1) HFHDO5 - 20 5 0 0 0

(1) HFHD07 - 17 5 0 5 5

HFHD32 - 20 2 3 0 0

HFHD35 - 20 5 3 0 0

HFHBO1 10 1 0 C 0

HFHB02 26 2 0 0 0

HFHCDO1 38 1 0 0 0

HFHC02 HFND02 30/22 2 0 0 0

HFHC03 HFHDO3 26/8 3 0 0 0

HFHCO4 HFHDO4 31/15 4 0 0 0

HFHC05 HFHD05 31/19 5 0 0 0

HFHCO6 HFHDO6 28/14 5 0 5 0

HFHC07 HFHD07 17/12 5 0 5 5

(2) HFH1C05 HFH1CD05 20/18 5 0 0 0

(3) HFH2C01 HFH2DO1 28/18 1 0 0 0

(3) HFH2C02 HFH2DO2 15/16 2 0 0 0

(3) HFH2C05 HFH2DO5 15/18 5 0 0 0

(3) HFH2C07 HFH2DO7 18/18 5 0 5 5

(1) contamination effected
(2) new arrangement of tubes in the bundle
(3) after resoldered
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APPENDIX B. SAMPLE CALCULATIONS

Data set number 15 of run 'TBHC23" (Turbo-B tube, surface preparatiun-C,

2% oil, three tubes activated), for tube number 1 was used for the sample

calculation and program validation.

1. Test tube dimensions

Do= 14.15 mm

D= 12.70 mm

D= 11.58 mm

L = 203.2 mm

L, 25.4 mm

2. Measured parameters

Ti = 6.44 C

T2 = 5.83 C

T3 = 5.95 C

T4 = 6.13C

T5 = 5.86 C

T6 =5.31 C

Tldl = 2.21 C

Tld2 = 2.25 C

Aas = 2.79 V
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Vas = 2.685 V

3. Calculations

The heater power is calculated as

q= VasxAasx 60 x 1 (B.1)

The muftiplication factors of the volt and amp sensors are 60 and 1 respectively,

then

q=2.79 x2.685 x60 x 1

q = 449.469 W

The tube inside wall temperature is obtained from the average value of six

thermocouple readings.

Twi= E Tn (B.2)

Tw;= x (6.44 + 5.83 + 5.95 +6.13 + 5.86 +-5.31)

T ,= 5.92 C = 279.08 K

The tube outside temperature is calculated using Fourier's conduction term

and the tube inside wall temperature. Uniform radial conduction is assumed in the

tube wall.
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qxln Do (B.3)

where k, is thermal conductivity and is calculated at Tf as follows

k, = 434.0 - (0.112x Twi- K) (B.4)

k,, = 434.0 - (0.112 x 279.08)

k,,=402.74- IN

now

T~0-5.2 -449.469 x In( 1 . 5 )",o= 5.92 -
2 x n x 402 .7 4 x 0.2 0 3 2

To = 5.83C

The liquid saturation temperature at the top of the tube bank is

T ,= Tldl 2 Td2 (B.5)

T.S,= 2.21 .2.25

T,=2.23 C

In order to calculate the local saturation temperature for each tube, small

corrrections are needed due to the hydrostatic pressure difference between the

tube location and liquid free surface. This difference is calculated for tube one by
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AP=p xgxh, (B.6)

AP= 1523.12 x 9.81 x 0.127

AP = 1897.6 Pa

For 1897.6 Pa pressure difference, corrected saturation temperature is

obtained by adding 0.413 C (from standard tables for R-1 14) to Tea,. Corrected T,

is

Tk = 2.23-0.413 (B.7)

Tt =2.643 C

, T= T" - T ok (B.8)

A T= 5.83 - 2.643

AT= 3.19 C

The test tube is 12 inches long in total; only a section of 8 inches is uniformly

heated leaving a 1-inch ana 3-inch long unheated section at either end. The 1 and

3 inch unheated lengths behave as fins i- the heat transfer process. The following

procedure is applied to the unheated ends of the tubes. Calculations are shown

for the one inch length only.

Heat transferred from the unheated end is calculated as heat from the base

of a fin:
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q,= (h,, px k,,x A,)"xA Txtanh(nx L,) (B.9)

where

Pr. x D,,=,n( 14.15 mm) (8. 10)

P= 44.45 x 10-3M

now

A,= 7Ex (0.01415'2 0.01272)

Ac= 30.6 x 10-6m2

The corrected length of unenhanced surface at the end can be calculated as

Lc = , - t(B. 12)
'2

L, = 0.0254 - (0-01415 -0.0127)
4

L= 0.02576 m

n/= hlxp )05(B13

hb is the natural convection heat transfer coefficient of the finned-like ends and can

be calculated using the 'Churchill-Chu [Ref. 21] correlation for natura! convection

from a smooth horizontal cylinder, as modified by Pulido [Ref. 22]._
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gx1 x&Dx ATxtanh(nxLc) 
S

h b = k x 4.6 -. 387 x v] -- 1 2 B 4

10.559)-M 12'

An iteration technique is then necessary to calculate hb. The physical properties

are calr,',-'ted at the vapor mean film temperature given by

Tfilm = T1.1 0 7o (B. 15)
2-

Tfilm = 2.64 - 5.83
2

Tfilm = 4.23 C = 277.23 K

For R-1 14, the physical properties are given by [Ref. 23]

exp 4.4636 1011.47 x 10- 3 .--6

p=443 .9 x 10 - kg

c= [0.40188 TfilmK x ( 1.65007 x 10-3 + 1.51494 x 10' (B.17)

x TfimK - 6.67853 x 10- 1 x Tfi/n&) I x 10"

cp :, 961.44
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p = 16.0'84533 x (36.32 + 61.146414 x *113 + 16.418015 x

17.4 76 83 8 x 1/2 + 1.11 982 8 x *2)

where

qrfl,1 1.8 x TfIlrk) (B. 19)
- 753.95-

ir =0.338

and

p = 1517.8 kg7-P

k = 0.071 - (0.000261 x Tfilm) (B.20)

k = 0.071 - (0.000261 x 4.23)

k = 0.06995 -w
k=m R

Pr =c, x (B.21)

Pr = 961.44 x 443.9x 10'

Pr=6.10

1 x p2.22 - p2.77 (B.22)
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1 1523.12 - 1521.54
523.T 0.556

=1.869 x 1031
-K

V = I1 (B.23)
P

443.9 x 10-6  1 n- r

292.46x 10-

k (B.24)
p xcp

0.06995 47.94 x 10-9 rr
1517.8 x 961.44 .s

Using the above physical property equations evaluated at Tfilm, hb is

obtained by iteration to an accuracy of 10-6.

w
hb = 366.21 WrrWK

and

n (366.21) (44.45 x 10- 3 ) = 36.34
(402.74) (30.6 x 10')
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qf = ( 366.21 x 44.45 x 10-3 x 402.74 x 30.6 x 10-6 )05 x 3.19 x tanh (36.34 x 0.02576)

q,= 1.15W

The corresponding results for the three inch long end is found to be

hb = 292 W

qt= 1.38 W

The heat transferred from the heated 8-inch section is then calculated as

q = 449.469 - 1.15 - 1.38

q = 446.939 W

The heat flux and heat transfer coefficients are then obtained from

q (B.25)

446.939
x 14.15 x 10' x 0.2 03 2

q"= 4.95 x 1 W

and

h= (B.26)

h =4.95 x 10'

h=1.51 W
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APPENDIX C. UNCERTAINTY ANALYSIS

The uncertainty associated with experimental parameters is calculated from

the equation suggested by Kline and McClintock [Ref. 24]. If

R= R(x,,x 2 ...... x,,) (C.1)

then

iFRx (2 +(R,,

6R 2) . .......... ( a (C.2)

where AR is the uncertainty of the desired dependent variable R and Axj, Ax2,

6x, are the uncertainties associated with the n variables, x1, x2, ... x,.

The boiling heat transfer coefficient is given by

h= q (C.3)
A sx( "wo- TX)

where

q x In ( (C.4)T. T.o' 2 ox xL

In equation (C.4), the second term on the right hand side is called the Fourier

conduction term. If we define this term as,
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qxn n(-D. ] (C.5)

-)=2xn x K,,,x L

and

AT=T- T=, (C.6)

then the uncertainty in the heat transfer coefficient is obtained from the following

equation:

[h(q)2(6A.2A 2 42 (fj* j] (C.7)

where

q=VxI (C.8)

,Iq=(,,V2+("2j71(C.9)

where a V and 8/ are given accuracy of the sensors which were used in

experimentation. Calculation of surface area and the uncertainty of it were given

as

98



As= 7c x Do x L (C.1O)

AA D.) 6) (C.1 1)

6Do and are estimated quantities.' The uncertainty calculation of the Fourier

conduction term is given below.

+ ~(C. 12)

k,. was calculated using below equation

k,, = 434.0- (0.112 x TWK) (C.13)

so uncertainty in k,. can be found as

6k,, =[(0.112 x 6 T K)2]1 (C.14)

6 T and 6 T,, are obtained using uncertainties in the thermocouple readings.

Average wall inside temperature T,,, was obtained taking the average of six

thermocouple readings inside the tube. The uncertainty associated with this

variable is

1 Work-shop device and human error in length and diameter measurements.
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where 8TC was obtained as ±t0.5 C from [Ref. 23].

Saturation temperature was obtained by taking the average of two

thermocouple readings and the uncertainty in this temperature was calculated from

the following equation,

6 2 x ( T2 )2 ]2 (C. 1)

Table Cl shows the results of the uncertainty analysis performed using data

file 'TBHC05." Tube number one was arbitrarily chosen for the analysis. The high

heat flux and low heat flux correspond to the value of q"=68.8 kW/m 2 and q'"=697

W/m 2 respectively.

As seen in Table C1, uncertainty associated with the heat transfer coefficient

increases to a value of 14.1% for low heat flux despite having a value of 8.7% for

high heat flux.

For both low and high heat fluxes, the major uncertainty contribution is

related to the term of 6T,,t. Since only two saturation temperature readings are

taken in the refrigerant, the equation (C.16) results in the value of 8T,,t=±0.3534.

Since the AT has a small value (2.77 C) at low heat flux, the term of 6 Tst causes

a noticeable increase in the uncertainty associated with the heat transfer

coefficient.
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TABLE C1. UNCERTAINTY ANALYSIS RESULTS

Variable High Heat Flux Low Heat Flux

A T 4.05 C 2.77 C

T,,i 6.94 C 5.03 C

T,,, 2.28 C 2.20 C

6 V .5% .5%
q7

S.5% 5%-/-

6q .71% .71%
q

6Do .1%.1

-UL-

6AS .14% .14%

6kc" 7.6% 7.6%

7.6% 7.6%

6h 8.7% 14.1%
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